Model coupling with the Framework for Aquatic Biogeochemical Models
A demonstration with the European Regional Seas Ecosystem Model

Jorn Bruggeman\(^1,2\)^, Momme Butenschön\(^2\), Karsten Bolding\(^1\)

\(^1\) Bolding & Burchard ApS., \(^2\) Plymouth Marine Laboratory
* corresponding author: jorn@bolding-burchard.com

Why a framework?

Biogeochemical models are becoming more complex
- Contributions from many individuals/research groups, but final codes remain monolithic and hard to maintain

Coupling to hydrodynamics is time-consuming and error-prone
- It requires intimate knowledge of the hydrodynamic model:
 - spatial domain
 - physical variable storage (T,S)
 - numerical schemes
 - input/output

- Each hydrodynamic model requires its own coupling: no standardized Application Programming Interface (API) exists

Aims

Distributed development of biogeochemical models
- Partition functionality over many compact, self-contained modules

Portability across hydrodynamic models
- Code biogeochemistry once, use in 0D, 1D, 2D, 3D hydrodynamic models

Maximum control for end-users
- Select, couple and configure modules at run-time

Splitting hydrodynamics and biogeochemistry

Hydrodynamic model
- Store physical variables
- Handle advection, diffusion, time integration
- Handle input/output

Biogeochemical models
- Provide names & units of variables, parameters, dependencies
- Give a local environment, provide local sink and source terms

Programming decisions

Object-oriented Fortran 2003
- Preprocessor macros for space-dependent constructs

Enable vectorization
- API operates on 1D array slices

Minimize data copying and memory consumption
- Framework operates directly on arrays in host

Plain-text configuration of parameterization and coupling
- Single file based on YAML, http://yam1.org

Test case: ERSEM

Statistics
- Pelagic state variables
- Benthic state variables
- Parameters
- Phytoplankton groups
- Zooplankton groups
- Chemical elements

FABM-ERSEM: each "integral physical entity" is a module
- For instance: phosphate, medium-size detritus, diatoms, mesozooplankton

Coupling at run-time by FABM
- ERSEM: 24 modules, 400+ coupling links!

Modularity and coupling

Performance

- Original GOTM-BIO/NPZD
- GOTM-FABM
- Bespoke GOTM-ERSEM

- Runtime relative to equivalent GOTM-FABM simulation

Try it: http://sourceforge.net/projects/fabm/

Biogeochemical modellers: Focus on the biogeochemistry. Code it once, then use in many hydrodynamic models.

Hydrodynamic modellers: Access ERSEM and other biogeochemical models through documented, efficient interfaces.

Paper forthcoming in Environmental Modelling & Software
Public release of FABM-ERSEM is imminent
Contact jorn@bolding-burchard.com for information