1. Introduction

We examine the El Niño / Southern Oscillation (ENSO) in 1990-control simulations from GFDL's global coupled GCMS, in which horizontal resolution has been progressively refined in the ocean & atmosphere.

2. Climatological Context

The atmospheric grid refinement (CM2.1→FLOR) improves the annual-mean tropical Pacific climatology, dramatically reducing the equatorial cold/dry bias, Peru coastal warm bias, double-ITCZ bias, and the overly strong equatorial trade winds in the west, as well as boosting the upper-ocean thermal stratification in the central equatorial Pacific. The oceanic grid refinement (FLOR→CM2.6) slightly reduces the equatorial cold bias and double-ITCZ, but worsens the warm SST biases and overly strong winds. Further attention to the ocean formulation may be warranted for these high ocean resolutions.

3. ENSO Spectrum, Seasonality, and Diversity

CM2.1's ENSO spectrum is fairly realistic, except for its very strong variance. The NINO3 region (150°W-90°W, 5°S-5°N) SST anomaly (SSTA) variance is even stronger in FLOR, but weakens in CM2.5 & CM2.6. Atmospheric/ocean grid refinement leads to a sharper spectral peak & shorter period for ENSO, less positive skewness of NINO3 SSTAs, and less diversity of event amplitudes. All four models show too little tendency for ENSO events to peak near the end of the calendar year, but CM2.1 & CM2.5 show a distinct semiannual synchronization, while CM2.6 shows improved annual synchronization. Such differences may be linked to the strength of the double-ITCZ in each simulation.

4. Tropical Pacific Patterns of ENSO

Relative to observations, CM2.1 shows a westward shift of its patterns of tropical Pacific SST, rainfall, and wind stress during ENSO. The SST pattern benefits from both atmospheric & oceanic refinement, while the rainfall & wind responses benefit mostly from atmospheric refinement.

5. Global Teleconnections of ENSO

Many of ENSO's global teleconnections improve as the model resolution increases – in particular for surface temperature over North America, Africa, India, northern Asia, the Amazon basin, and the tropical and Atlantic Indian Ocean rainfall over North America, Africa, the Amazon, and the west Pacific; and 200hPa geopotential heights over North America, northern Asia, and the North Pacific. The teleconnections benefit from a westward shift of the response of tropical atmospheric deep convection to ENSO, as well as improved storm tracks & global topography/bathymetry at high-resolution.

6. ENSO Mechanisms

The above changes in ENSO emerge from a complex interplay of processes that drive equatorial SSTAs. In FLOR, a stronger thermal damping of equatorial SSTAs (primarily from an enhanced east Pacific evaporative feedback) is trumped by stronger subsurface feedbacks which amplify ENSO and pull its SSTAs eastward. The thermocline feedback (wptm) is boosted by stronger subsurface thermal fluctuations – which are driven by stronger east Pacific thermocline depth anomalies (h), and by increased sensitivity of the SSTAs to h due to the intensified thermocline. The stronger h is caused not by the equatorial wind anomalies (which hardly change) but by enhanced off-equatorial surface wind stress curl, which generates a stronger delayed meridional exchange/discharge of equatorial heat content. Enhanced upsampling feedbacks (wptm) further amplify ENSO in FLOR, due to both stronger upsampling fluctuations and stronger upper-ocean thermal stratification. Enhanced zonal advection feedbacks (wptm) play a transitioning (period-shortening) role in the central Pacific, augmenting a similar role for the thermocline feedback in the east Pacific as the thermocline intensifies at high-res.

Related Work

Related Work

*Dr. Andrew T. Wittenberg, US DOC/GFDL, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540-6649. Email: Andrew.Wittenberg@noaa.gov Web: http://www.gfdl.noaa.gov/~atw