How Do Strong M2 Internal Tides Affect Mesoscale Predictability in the Philippine Sea?

Colette Kerry and Brian Powell

Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, HI, United States

Introduction

- Numerical modeling of the ocean is complex as energy exists at many different, interacting temporal and spatial scales.
- The atmospherically-forced eddying ocean circulation is typically simulated without tides.
- How do the tides affect the mesoscale dynamics?

For ocean prediction, data assimilation techniques are used to constrain ocean circulation models using observational data.

- Unresolved internal tides may be a significant component of the observations.
- How do the non-deterministic internal tides (Kerry et al., 2014) affect the value of assimilated observations?

Unresolved internal tide SSH expression means the specified SSH errors must be higher.

- Internal tides can cause significant heating of isopycnals (over 100 km near the Luzon Strait in the Philippine Sea).
- Sub-surface observations sample this but in most cases (e.g., Argo floats, gliders, CTDs) cannot resolve the internal tide variability in the observations around the thermocline in constraining state estimates.

- Does including internal tides in the circulation model improve predictability of the sub-tidal circulation?

The Philippine Sea has energetic internal tides (e.g., Alford et al., 2011) and dynamic mesoscale circulation (Fig. 2, Qiu and Chen, 2010), making it a challenging region to predict and an ideal area to study the interactions of these processes in the ocean.

Methods

Model Description

- Regional Ocean Model System (ROMS), free-surface, hydrostatic, primitive equi. model.
- 8-km horizontal resolution with higher resolution of 4.5 km over the Luzon Strait.
- 25 vertical layers.
- Outer domain.
- Boundary and initial conditions from the Mercator general ocean circulation model.
- Atmospheric forcing from National Center for Environmental Prediction (NCEP) atmospheric model.
- Nested domain.
- Data assimilation performed on the inner domain.

Data Assimilation

- Solve for increments to model initial conditions, boundary conditions and forcing that minimize the difference between modeled solution and all available observations, over the assimilation window (4D).
- Difference between the obs. (y) and the NL model prior (x0), mapped to obs. space: (H - y - x0).
- Cost function, J, is a function of increments in model initial conditions, boundary conditions and forcing $\delta x = x - x_0$,

$$J = \frac{1}{2} \sum_{i=1}^{n} (x_i - x_0)^T (R + H_i - H_i)^T (x_i - x_0) + \frac{1}{2} \sum_{i=1}^{m} (H_i - H_i)^T (x_i - x_0)$$

- R, background error covariance; P, observation error covariance; H, NL, where H is a linearization of $\frac{1}{2} \sum_{i=1}^{n} (x_i - x_0)^T (R + H_i - H_i)^T (x_i - x_0) + \frac{1}{2} \sum_{i=1}^{m} (H_i - H_i)^T (x_i - x_0)$

- Find x that minimizes $J(z)$ (with subsequent interations of the TL and ADJ models).

- The Analysis makes use of the dynamical connections between the model fields, that such observed variables propagate information to unobserved, dynamically-linked variables.

Observations - 2010

- Sea Surface Height (SSH), 4-day gridded (1/3 x 1/3 degree) mean sea level anomaly data.
- Sea Surface Temperature (SST).
- Salinity from the Oceanic Geosat Follow-On (OGFO) mission.
- Temperature and salinity from the Salinity, Temperature, Velocity (STV) moorings.
- Temperature and salinity from the DOOSA (depth of oceanographic simulation) CTDs.
- Temperature and salinity from the DOE (Department of Energy) CTDs.
- Temperature and salinity from the DOOSA (depth of oceanographic simulation) CTDs.

Results

Sea Surface Height Predictions

- 7-day assimilation windows, TL assimilation valid.
- Background error covariance is specified for forecast errors from preliminary year-long assimilation.
- Observe error covariances are the max of:
 - Instrument error
 - Errors of representativeness, "Super obs."
 - Typical variability.

- TPID is removed from SSH obs. for Twin 2.
- SSH error includes 3cm AVISO error for Twin 1, and AVISO error plus error due to not resolving the internal tides for Twin 2.
- SSH errors greater for Twin 1 and 0.04 (2.5°C)
- Sub-surface errors greater for Twin 2 to account for the unresolved internal tide variability.

Sea Surface Temperature Predictions

- How do the non-deterministic internal tides impact the models given observational data.
- How do the non-deterministic internal tides impact the models given observational data.

Sub-Surface Temperature Predictions

- Temperature at 300m - depth of greatest variability.
- High frequency (> 48 hrs)
- Low frequency (< 15 hrs)

Conclusions

- The future impact of 2010 internal tides on the mesoscale is not resolved.
- High Freq. errors in Twin 2 are the difference between the "TRUE STATE" and the TPXO tidal SSH expression.

- Low Frequency (mesoscale) Sea Surface Height predictions are worse when the tides are not resolved.
- Partly in the SCS where the SSH obs. errors are high (Fig. 4), and in the dynamic Kuroshio.
- Greater adjustments are made in the analysis for Twin 1 as the specified obs. errors are lower.
- High Freq. SSH error for Twin 2 is the difference between the "TRUE STATE" and the TPXO tidal SSH expression.

- Low Frequency (sub-surface) temperature errors are worse when tides are not resolved, particularly in the Kuroshio and SCS regions.
- Skill is greatest in the Phl. Sea and lowest in the Kuroshio region.
- The Twin 2 SST Forecast is NOT better than Persistence in the Kuroshio and SCS regions.

References