MAPPING THE RESILIENCE OF THE CORAL REEF SOCIO-ECOSYSTEMS IN JAPAN

Introduction

- Recently, IPCC has upwardly assessed the sea level rise (RCP 8.5: +74 cm in 2081-2100, 52-98 cm range)
- A direct consequence is a dramatic increase in coastal vulnerability: assets and human lives
- Shallow coral reefs provide ecological services: food and raw material, recreo-tourism, coastal protection
- However, coral reefs are undergoing severe threats with an unprecedented pace, which dramatically reduce their protection efficiency

Objectives

We propose here to elucidate the spatial resilience of the Japanese coral reef socio-ecosystems in focusing on the socio-economic vulnerability and the coral reef resilience for both the 2002-2012 annual time series and the 2081-2100 period predictions

Methods

- The study area encompasses the Nansel archipelago, ranging from Yonaguni to Tanega island (> 1000 km length) Study site of the spatial resilience (Nansel archipelago + six sub-areas)
- The evaluation of the spatial resilience is based on spaceborne and waterborne data as well as historical and geopolitical information
- Values of the socio-economic and ecological factors are retrieved from terrestrial and marine realms, respectively

Description and Weighting of main stress/resilient factors involved in the coral reef socio-ecosystems

<table>
<thead>
<tr>
<th>Factors</th>
<th>Source</th>
<th>Resolution</th>
<th>Period</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclone Storm</td>
<td>Tropical Cyclone Storm Best Track Data</td>
<td>1 arc-minute</td>
<td>2002-2012</td>
<td>2</td>
</tr>
<tr>
<td>Tsunami</td>
<td>Global Historical Tsunami Database</td>
<td>1 arc-minute</td>
<td>2002-2012</td>
<td>2</td>
</tr>
<tr>
<td>Cyclone Storm</td>
<td>Tropical Cyclone Storm Best Track Data</td>
<td>1 arc-minute</td>
<td>1951-2010</td>
<td>1</td>
</tr>
<tr>
<td>Tsunami</td>
<td>Global Historical Tsunami Database</td>
<td>1 arc-minute</td>
<td>2000BC-2012</td>
<td>1</td>
</tr>
</tbody>
</table>

Elevation: GDEN v.2 1 arc-second 2011 3

A fuzzy logic membership function (logistic curve fitting a normal cumulative distribution function) is applied for each factor

- **Resilient**: Increasing logistic curve
- **Stress**: Decreasing logistic curve

Maps and curve plots of the Asset, Population and Coral reef vulnerability/resilience indices

2002-2012 time series

- Okinawa’s assets are much more vulnerable than remaining cluster’s
- Okinawa’s and Miyako’s population are the most vulnerable but other sub-areas’ conspicuously differentiate across time
- SW followed by NE coral reefs are more resilient than central (Okinawa and Miyako) Extremes Southern and Northern Japanese coral reef socio-ecosystems are/ will be more resilient than middle Okinawa/Miyako

2081-2100 predictions

- Okinawa’s assets and population will be the most affected sub-area (both scenarios)
- SW assets and population will be the least affected sub-areas for RCP 2.6
- NE assets and population will be the least affected sub-areas for RCP 8.5
- SW followed by NE coral reefs will be more resilient for both scenarios than central (Okinawa and Miyako)