Motivation:

To develop gap-filled satellite ocean color fields for use in biogeochemical, ocean, and climate forecast models.
Abstract:

NOAA’s focus on coupled modeling and ecological forecasting requires

establishing a robust data stream for addressing bio-physical feedback mechanisms and global ocean coupled physical-
modeling. Assimil ing ocean color ions linking biological processes and upper-ocean

dynamics is needed to initialize and constrain model evolution. Integrating/assimilating satellite ocean color fields
(chlorophyll-a, Kd,gq, Kdp,g) into NOAA’s operational ocean models requires scienti i and robust
for addressing data gaps. One possible approach is a Neural Network (NN) gap-filling technique, linking ocean color
variability, primarily driven by biological processes, with the physical processes of the upper ocean. A NN method for
correlating satellite ocean color fields with other assimilated satellite and in situ observations : a) instigates fewer
assimilation errors and b) reduces reliance on sparse in situ ocean color observations. Satellite-derived surface variables
[sea-surface temperature (SST), sea-surface height (SSH) and sea-surface salinity (SSS) fields] and ARGO in situ gridded
profiles of and salinity are as of dynamics. Ocean color fields from NOAA’s
operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used as well as NOAA SSH and SST fields and NASA
Aquarius mission SSS fields. The NN technique is trained for two years (2012 and 2013) and tested on the remaining year
(2014). Results are assessed using the root-mean-square error (RMSE) and cross-correlations between observed ocean color
fields and NN output. To reduce the impact of noise in the input and ocean color datastreams, an ensemble of NN are
constructed with with different weights.

Data:
« VIIRS chlorophyll-a (NASA), composited daily and interpolated from 9-km resolution to a 1-degree grid

ARGO temperature and salinity profiles for the top 75m (International Pacific Research Center, Hawail; Lebedev, et .,

2010), gridded (1-degree i to daily values

Daily satellite SSH (NOAA; Leuliette et al., 2010), 0.5-degree resolution interpolated to a 1-degree grid

Daily satellite SST (NOAA; Reynolds et al., 2007), 0.25-degree interpolated to a 1-degree grid

Aquarius composited daily SSS (NASA JPL-PO.DAAC, Aquarius User Guide, V3, 2014; also, Tang et al., 2014), 1-degree

resolution.

These observations are well documented and available, or soon to be available, in near-real time. All data (2012-2014)

were interpolated to the same one-degree latitude-longitude grid and are available at daily temporal resolution.

Background: Neural Networks

Neural networks (NN) are very generic, accurate, and convenient mathematical models that emulate complicated nonlinear
input/output relationships through statistical learning algorithms. NNs approximate the transfer functions (mappings) between a
large number of possibly-interconnected inputs and multiple outputs, even for nonlinear and not-well-known relationships.
Neural networks employ adaptive weights, tuned through training with past data sets, to provide robustness with respect to
random noise and fault-tolerance. While neural network training is a icated and time- ing nonlinear optimi

task, NN training needs to be done only once for a particular application and then repeatedly applied to new data, providing
accurate and fast emulations. However, to retain the required accuracy, retraining may be required periodically. Neural
networks are also well-suited for parallel and vector processing. NN can be applied to any problem that can be formulated as a
mapping (input vector vs. output Mapping can be written as:

Y=M(X); XeR"YeR" W

where M denotes the mapping, n is the dimensionality of the input space (number of emulating NN inputs), and m is the
dimensionality of the output space (number of emulating NN outputs). Multi-layer perceptrons (MLP) are a generic tool for
approximating such mappings (Krasnopolsky, 2013). MLP NN analytical approximations use a family of functions like:
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where x and y, are components of the input and output vectors X and ¥, respectively, a and b are NN weights, and
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is a “neuron”. Equation (2) is also a mapping, which symbolically can be represented as Y = NN(X).
A data set i required to train, test, and validate NN (Eqn 2). To train NN, an error function, £, is created and minimized to find an

optimal set of coefficients a, and b 00
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All input and output data are observations, which have different levels of noise, thus, errors in NN simulated data (e.g., the Chl-a
data depicted in Figure 2) are a combination of all these noises plus the NN approximation error. Using the NN Jacobian (vector
of derivatives of NN output over inputs), the partial levels of noise in observations and relative impact of inputs can be
estimated; thus, the NN can be used as an indirect estimator of the level of noise in observations. To reduce the impact of noise
and to calculate a stable NN Jacobian, multiple NN with different weights are constructed and the ensemble mean is compared
with a single NN for different metrics (e.g., bias, variability, error and cross-correlation).

Ensemble Member Performance

Table 1. Performance of single NNs (ensemble members) and the ensemble mean on validation data set for

Chl-a [grid points with Chl-a > 1 mg/m3 are removed to reduce the impact of noisy datal.
Ensemble Member RMSE (mg/m"3) Cross-Correlation
1 0.110 0.722
2 0.093 0.766
3 0.097 0.757
4 0.097 0.757
5 0.094 0.758
6 0.094 0.758
Ensemble Mean 0.091 0.792

Table 1: The ensemble mean has higher cross-correlation between the NN output and the VIIRS observations and
lower RMSE than any of the individual ensemble members. The ensemble mean clearly outperforms all the
individual ensemble members, which suggests that random noise may be contaminating the input and/or
observation streams.
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Figure 1: The linearized estimates (using NN Jacobian) of the contribution of various inputs — latitude, daily SSH, daily SSS,
daily SST, monthly ARGO surface and subsurface temperature and salinity — on the ensemble NN output.

Figure 1 shows that the most important input is the satellite SST, followed by the surface and subsurface ARGO salinity
observations. The surface ARGO temperature and salinity observations are less important than those from the
subsurface, possibly because the satellite SST and SSS are able to capture some of the surface variability of temperature
and salinity, respectively.
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Figure 2: Neural network (NN) chlorophyll-a (chi-a) bias, referenced to VIIRS observations (NN — VIIRS values): a) global
mean bias [full data set = black; chl-a values exceeding 1.0 mg/m? removed = red; solid lines for ensemble mean, and dashed
lines for single NN] ; and global bias (chl-a > 1mg/m?3 removed) for b) ensemble mean and c) for single NN.

The mean bias shows a clear seasonal cycle for the global oceans, with positive values during the boreal winter and negative values
during the austral winter. The spatial pattern of bias (Fig 2b) has positive values in the equatorial Pacific Ocean and negative values in
the equatorial Indian Ocean. Large bias values are found at high latitudes and in shallow waters. Thus, the bias is reduced when points
where chl-a > 1mg/m? are removed.
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Figure 3: Percentage ratios of NN RMS Variability / VIIRS RMS Variability in percent for a) ensemble and b) single NN for
chlorophyll-a (grid points with chl-a> 1mg/m? removed).

Figure 3 depicts the ensemble NN's success in capturing chlorophyll-a variability in the VIIRS observations. The single NN
estimates are over energetic with respect to VIIRS observations, while the ensemble mean has approximately the same level
of variability as the VIIRS observations.
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Figure 4: NN chl-a cross-correlation to VIIRS observations.  a) global mean time series [full data set = black; chl-a

values exceeding 1.0 mg/m? removed = red; solid lines for ensemble mean and dashed lines for single NN] ; b) global
ensemble mean cross-correlation (chl-a > 1mg/m3 removed); and c) cross-correlation difference between ensemble mean
and single NN.

The cross-correlation (CC) is relatively high throughout the validation period (> 0.8), which is reassuring. The CC is more
variable for the case where all data points are retained, suggesting that data points with chl-a > 1 mg/m? are
responsible for notably degrading NN performance. The NN has difficulty in certain regions, possibly because high
spatial gradients and temporal variability in VIIRS chl-a values are not adequately sampled, currently, by the inputs (SST,
SSS, Tand S). The ensemble mean has higher CC than a single NN in the mid-latitude north Pacific and Atlantic oceans.
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Figure 5: NN chl-a RMSE, referenced to VIIRS observations: a) global mean RMSE [full data set = black; chl-a values
exceeding 1.0 mg/m? removed (less than 1% of data removed) = red; solid lines for ensemble mean and dashed lines for
single NNJ ; and global bias (chl-a > 1mg/m3 removed) for b) ensemble mean and c) for single NN.

Figure 5 indicates that the error-to-variability [RMSE(NN)/RMS(VIIRS)] ratio is lowest in the center of the major ocean
gyres. The overall error is small (< 0.1 mg/m3) for most of the year for the ensemble means. However, the signal is also
small, so the error to variability is low (< 0.4) only in the center of the major ocean gyres. The ensemble mean
outperforms the single NN noticeably almost everywhere.
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