The HER2-targeting ADC SYD985 shows superior antitumor activity compared to T-DM1 in preclinical studies with an activity profile that includes low-HER2 expressing breast cancers.

INTRODUCTION

SYD985 is a HER2-targeting ADC based on Synthon’s newly developed, duocarmycin-based, linker-drug technology. SYD985 consists of a cleavable linker–drug (vc-seco-DUBA; Figure 1) coupled to the mAb trastuzumab. Head-to-head studies were performed comparing anti-tumor activity of SYD985 versus T-DM1 in cell lines in vitro and in (patient-derived) xenografts in vivo. SYD985 mainly consists of DAR2 and DAR4 species and is the fractionated form of SYD983 which we also refer to as poster 2651.

OBJECTIVE

To compare the anti-tumor activity of SYD985 to T-DM1.

vc-seco-DUBA

![Image of vc-seco-DUBA](image)

RESULTS

Cytotoxicity in vitro

![Figure 2. Cytotoxicity induced by SYD985 versus T-DM1 in a series of cell lines with different HER2 expression levels (indicated). Incubation times were 6 days (A-D, G-H) or 12 days (E-F) in the presence of ADC.](image)

Anti-tumor activity and survival in vivo in (patient-derived) xenografts

![Figure 3. SYD985 and T-DM1 were tested at different dosages for their anti-tumor activity in vivo in a series of cell-line-derived (BT-474) and breast-cancer PDX models. Xenograft models (names indicated) were performed by different CROs using different, well-established, methods (kits). FISH and IHC classification was independently confirmed using tumors prepared from vehicle-treated mice at the end of the study. IHC was performed on the Discovery automated platform (Ventana Roche) with the primary Ab anti-HER2/neu (485). (A) Anti-tumor activity of SYD985 versus a non-binding isotype control ADC (rituximab-based) in the respective xenograft models shows that activities induced by SYD985 are mediated through HER2. ADCs were administered intravenously by a single dose at the time indicated by the arrow. (B) Anti-tumor activity of SYD985 versus T-DM1. (C) Modified Kaplan-Meier curves indicating survival of mice in the xenograft studies.](image)

PK of SYD985 and T-DM1 in tumor-bearing mice

![Figure 4. Mean ADC plasma concentrations in BT-474 tumor bearing mice after a single intravenous bolus injection of SYD985 at 1 or 3 mg/kg and T-DM1 at 1 or 3 mg/kg (corrected from 5 mg/kg) (± SEM, n = 3).](image)

SUMMARY

- SYD985 is more potent than T-DM1 in vitro in low HER2 expressing cell lines.
- SYD985 is more active than T-DM1 in vivo in a HER2 3+ cell-line and breast cancer patient-derived xenograft.
- SYD985 shows remarkable anti-tumor activity in breast cancer PDX models with low (2+ & 1+) HER2 expression.
- T-DM1 is not active in these low HER2-expressing tumor xenograft models, not even at a 10-fold higher dose than the effective SYD985 dose.
- SYD985 PK in mice is poor (mouse specific issue; see poster 2651). Exposure and anti-tumor activity of SYD985 in mice is an underestimation of what is expected in humans.

CONCLUSION

The anti-tumor activity of SYD985 in preclinical models warrants clinical studies in breast-cancer patients with low (FISH-negative / IHC HER2 2+ & 1+) HER2 expression.

OUTLOOK

- SYD985 may double the target population of breast cancer patients that could benefit from HER2-mediated ADC therapy.
- A Phase I clinical trial will start 2nd half of 2014

Acknowledgement:

- BT-474 xenograft was performed at Oncodesign, Dijon, France
- MAXF 1162 and MX1 were performed at Oncotest, Freiburg, Germany
- HBCx-10 and 34 were performed at XenTech, Paris, France
- ST-313 was performed at Start, San Antonio, TX, USA