« Back
Analysis of Engine Emissions from Biodiesel Prepared by Using Calcined Egg Shell  Powder as a Heterogeneous Catalyst
Poster Title: Analysis of Engine Emissions from Biodiesel Prepared by Using Calcined Egg Shell Powder as a Heterogeneous Catalyst
Submitted on 01 Apr 2017
Author(s): Francis Okejiri, Ngee Sing Chong
Affiliations: Middle Tennessee State University
This poster was presented at PittCon Conference and Expo 2017
Poster Views: 2,316
View poster »

Poster Information
Abstract: Egg shells were calcined at 1000℃ for 4 hours to obtain calcium oxide (CaO) which was investigated as a heterogeneous catalyst for the transesterification of waste cooking oil. The catalyst was characterized by Fourier Transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). Process parameters such as methanol-to-oil molar ratio, catalyst concentration, and reaction time on biodiesel yield were all evaluated and optimized. A maximum percentage yield of 99.11% was obtained at 9:1 methanol to oil molar ratio, 4 wt.% catalyst loading, 2 hours of reaction time, and reaction temperature at 65℃. The percentage yield was determined by 1H NMR. Additionally, the biodiesel synthesized was subjected to treatment methods including the hydrogenation of the double bonds in the FAME which are responsible for fuel gelling at low temperatures. The emission profile for various combinations of the biodiesel produced and the ultra-low sulfur petroleum diesel in a diesel-powered generator was characterized by gas chromatography coupled to mass spectrometry (GC-MS) and FTIR. The fuel mixture with 30% biodiesel blend was found to yield the lowest levels of carbon monoxide, methane, ethylene, and formaldehyde.Summary: The engine emission of traditional petroleum-diesel was compared with the biodiesel synthesized using calcined egg shell powder as a heterogeneous catalyst.References: 1. Leung, D. Y. C.; Wu, X.; Leung, M. K. H., A review on biodiesel production using catalyzed transesterification. Applied Energy 2010, 87 (4), 1083-1095.
2. Robles-Medina, A.; González-Moreno, P. A.; Esteban-Cerdán, L.; Molina-Grima, E., Biocatalysis: Towards ever greener biodiesel production. Biotechnology Advances 2009, 27 (4), 398-408.
3. Alternative Fuels Data Centre. (accessed 12/5/2016).
4. Zhang, Y.; Dubé, M. A.; McLean, D. D.; Kates, M., Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology 2003, 90 (3), 229-240.
Report abuse »
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters

Exploring the Use of Coarse Zoysiagrass Phenotypes as a Low-Input Turf for Golf Course Roughs
Esdras Manuel Carbajal Melgar

Targeted Dereplication of Microbial Natural Products by High-Resolution MS and Predicted LC Retention Time
Chervin J,1 Stierhof M,1 Tong MH,1 Peace D,1 Hansen KØ,2 Urgast DS,1 Andersen JH,2 Yu Y,3 Ebel R,1 Kyeremeh K,4 Paget V,5 Cimpan G,5 Van Wyk A,5 McKee M,5 Deng H,1 Jaspars M,1 Tabudravu JN1

New dataflow model for rapid processing of large volumes of LC/UV/MS data
Richard Lee1 Andrey Paramonov 1 , Eugene Vodopianov 1 , Vladislav Solomatin 1

Consistent Detection of Multiplets in 13C Spectra Using Structure Aware Algorithms
Dimitris Argyropoulos, Sergey Golotvin, Rostislav Pol and Vladimir Mikhailenko

Efficient Approaches for Addressing Spectral Ambiguities in Computer Assisted Structure Elucidation (CASE) Systems
Dimitris Argyropoulos, Rostislav Pol, Mikhail Elyashberg and Sergey Golotvin