« Back
Automated protein digestion workflows for MS-based proteomics applications
Poster Title: Automated protein digestion workflows for MS-based proteomics applications
Submitted on 18 Jun 2014
Author(s): Gunnar Dittmar1, Oliver Popp1, Guenter Boehm2, Andreas Bruchmann3
Affiliations: 1Max Delbrück Center for Molecular Medicine, MDC, Berlin, Germany; 2CTC Analytics, Zwingen, Switzerland; 3Axel Semrau GmbH, Sprockhövel, Germany
This poster was presented at ASMS 2014
Poster Views: 2,361
View poster »

   Find out more »
Poster Information
Abstract: Mass spectrometry (MS) based bottom-up proteomics is built upon large scale identification of peptides, and depends on proteins being efficiently converted to peptides by a protease of known specificity. The most common preparation methods are digestion in solution (ISD) or digestion of Proteins separated on an SDS PAGE gel, in-gel digestion (IGD). Both methods consist of a lengthy sequence of washing and chemical modification steps. To increase throughput and reproducibility, automation of these processes is highly desired. Contrary to other „omic“-applications, proteomics analysis by LC-MS/MS remains time-intensive, making the measurement the ratedetermining step in the pipeline. Thus the preparation of samples does not require a high-but rather a medium-throughput setup.

The normal benchtop methods for the IGD and the ISD were adapted to make automation in a robotic setup possible. In addition, we modified a standard PAL robot setup with a vacuum chamber that can be controlled by the robot's software and facilitates the removal of large volumes of washing solvents required by IGD leading to enhanced sensitivity.
Summary: The PAL RTC provides an affordable and reliable platform optimised for medium-throughput peptide preparation for shotgun-proteomics based mass spectrometry.
Reduce hands-on time on repetitive work!
Increase consistency!
Increase reproducibility
References: Report abuse »
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters

MALDI Imaging Mass Spectrometry for the study of cardiovascular pathology
Takashi Nirasawa1, Megumi Terada2,3, Hiroko Namba2, Nobuto Kakuda2, Patrick Bruneval3, Hatsue Ishibashi-Ueda4 and Masaya Ikegawa1

Distinct deposition of amyloid-bspecies in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry
Nobuto Kakuda1, Tomohiro Miyasaka1, Takashi Nirasawa2, Shigeo Murayama3, Yasuo Ihara1 and Masaya Ikegawa1

Routine Analysis of Host Cell Proteins in Antibody Preparations using PASEF
Stuart Pengelley1, Guillaume Tremintin², Waltraud Evers1, Detlev Suckau1

A Novel Method For Discovery of Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis Using Extensive Depletion and TMTcalibratorTM Tissue-Enhanced Plasma Proteomics
I. Pike1, M. Bremang1, P.J. Wolters 2, R. Gaster3, S. Turner3, M. Decaris3

Strategies for High-Titer Protein Expression Using the ExpiCHO and Expi293 Transient Expression Systems
Chao Yan Liu, Jian Liu, Wanhua Yan, Kyle Williston, Katy Irvin, Henry Chou, Jonathan Zmuda