Posters
« Back
Characterizing GPCR Activation Using Automated Live Cell Imaging
EP26130
Characterizing GPCR Activation Using Automated Live Cell Imaging
Submitted on 11 Jul 2017

Joe Clayton and Peter Banks
BioTek Instruments, Inc. Winooski, VT USA
Poster Views: 266
View poster »
Poster Abstract
G protein coupled receptor (GPCR)-mediated pathways are critical for cells to respond to intercellular and environmental cues, and are a major focus of drug discovery efforts, particularly for cancer treatment. The molecules that activate GPCRs, and the resulting signaling cascades triggered by associated G proteins, are diverse. Fluorescent dyes and biosensors can be used to monitor changes in second messenger levels, including Ca2+ and cyclic AMP (cAMP), in response to GPCR activation. Here we describe a live cell imaging based approach to detect GPCR activation using the Lionheart™ FX Automated Live Cell Imager and Gen5™ Microplate Reader and Imager Software. This method provides a large assay window and improved sensitivity over methods relying on total fluorescence intensity measurements. Dual in-line dispense tips enable addition of GPCR agonists with continuous monitoring of cellular response. Additionally, an image capture rate of up 20 frames per second enables characterization of rapid GPCR kinetics.

1. Together, the Lionheart FX Automated Live Cell Imager and Montana Molecular biosensors provide a versatile and robust system for detecting biologically relevant GPCR signaling.
2. Up to 20 fps image capture and dual in-line reagent injectors allow for uninterrupted monitoring of rapid cellular responses including Ca2+ flux and Gs/Gi-dependent regulation of cAMP production.
3. Imaging-based approach to detecting GPCR activation enables detailed characterization of single cell kinetic profiles and percent responder measurements.
4. 96-well format and automated image capture and analysis increases GPCR assay productivity and reproducibility.
Report abuse »
Questions
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters


The added value of traditional bulk sample measurements in single cell RT-qPCR experiments
Lukas Valihrach1, David Dzamba2, Peter Androvic1, Miroslava Anderova2, Mikael Kubista1,3

Different tolerance of loop-mediated isothermal amplification and polymerase chain reaction to inhibitors in chicken carcass rinse and feces for detecting Campylobacter jejuni
Hongsheng Huang, Beverley Phipps-Todd, Courtney Chew Leung and Dina Elleithy

A quick potency assay for osteogenic and chondrogenic differentiation and evaluation of donor variability of adipose derived stem cells
Eleni Oberbauer1,3, Susanne Wolbank1,3, Carolin Steffenhagen1,3, Ara Hacobian1,3, Georg Feichtinger1,3, Christian Gabriel2,3, Heinz Redl1,3, Florian Hildner2,3

Highly Automated “Sample-to-Result” NGS and PCR Workflow for Molecular Diagnostics
Elian Rakhmanaliev, Tatiana Ivanova, Yin Kum Ng, Alex Yeo, Harry Suhardi, Caroline Villy, Mei Qi Yee, Kevin Tan, Amanda Fan, Andy Soh, Pramila Ariyaratne, Si Kee Tan, Jocelyn Wong, Jiang Xia, Grace Tan, Jasmin Ang, John Ong, Gerd Michel, Charlie Lee, Wen Huang

Analysis of the Effect of Aggregated β-Amyloid on Cellular Signaling Pathways Critical for Memory in Alzheimer’s Disease
Brad Larson1, Arturo Gonzalez-Moya2, Alexandra Wolff3 , Wini Luty3