Posters
« Back
CiPA Phase 2 Study: validation of an automated microelectrode array (MEA) assay of hiPSC-derived cardiomyocyte electrophysiology for cardiac safety evaluation
EP25576
Poster Title: CiPA Phase 2 Study: validation of an automated microelectrode array (MEA) assay of hiPSC-derived cardiomyocyte electrophysiology for cardiac safety evaluation
Submitted on 17 Feb 2017
Author(s): DC Millard, AM Nicolini, SA Chvatal, HB Hayes, M Clements, JD Ross
Affiliations: Axion BioSystems
This poster was presented at Stem Cells in Drug Discovery 2017
Poster Views: 1,324
View poster »


Poster Information
Abstract: The Comprehensive in vitro Proarrhythmia Assay (CiPA), led by the US Food and Drug Administration, aims to reduce unwarranted drug attrition by improving preclinical cardiac safety evaluation. A key component of the proposed assay utilizes human stem cell derived cardiomyocytes (hSC-CMs) and microelectrode array (MEA) technology to evaluate the proarrhythmic risk of candidate compounds [1]. An initial pilot study with 8 blinded compounds demonstrated reproducible results across 10 studies. The CiPA Phase 2 study with 28 blinded compounds was established to evaluate the ability of the CM-MEA assay to assess proarrhythmic risk. The increased scale of the CiPA Phase 2 study was used as a case study in the development and validation of an automated CM-MEA assay for cardiac safety evaluation.
The iCell Cardiomyocyte2 and Maestro APEX automated MEA workstation were used to evaluate 28 compounds of high, intermediate, and low proarrhythmic risk in a blinded study. The amplitude and field potential duration (FPD) were extracted from the raw field potential signal for each replicate and compound, providing information on the depolarization and repolarization of the cardiomyocyte monolayers, respectively. Additional beating characteristics, such as the beating rate, variability in beat rate, and occurrence of EADs were also included in the analysis. Corrected field potential duration (FPDc) was computed using the Fridericia correction.
These results support the use of hSC-CM and MEA technology for preclinical assessment of proarrhythmic risk within the proposed CiPA paradigm, and, more generally, demonstrate that automation of the CM-MEA assay can achieve high reliability and throughput for cardiac risk assessment in vitro.
Summary: These results support the use of human stem cell derived cardiomyocytes (hSC-CMs) and microelectrode array (MEA) technology for preclinical assessment of proarrhythmic risk within the proposed CiPA paradigm, and, more generally, demonstrate that automation of the CM-MEA assay can achieve high reliability and throughput for cardiac risk assessment in vitro.References: [1] Millard, D. C., Clements, M., and Ross, J. D. (2016). The CiPA Microelectrode Array Assay with hSC-Derived Cardiomyocytes: Current Protocol, Future Potential. Stem Cell-Derived Models in Toxicology, pp.83-107
Report abuse »
Questions
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters


Genetic Engineering in Male Sterility for Hybrid Variety Development
Abir Hasan Joy

VITVO: Mimicking In Vivo Complexity By The Innovative 3D Model
Olivia Candini1, Giulia Grisendi1, Elisabetta Manuela Foppiani1, Matteo Brogli1, Beatrice Aramini2, Valentina Masciale3, Carlotta Spano1, Tiziana Petrachi4, Elena Veronesi4, Pierfranco Conte5,6, Giorgio Mari1 & Massimo Dominici1,3

Characterization of patient-derived organoids cultured on a gas-rich, liquid-liquid interface
James T. Shoemaker, Katherine R. Richardson, Jamie Arnst, Adam Marcus, Jelena Vukasinovic

Print Me An Organ?
Amanda Tan; Fatin Nur Syamimi Abdul Razak; Kathy Jia Qi Hu; Diew Fung Lau; Muhammad Hafizan Mustari; Nurul Fatihah Mohamad Azmi; Kar Hui Tan; Nithiyah Ramasundram

Functional Assay of Neural Activity with Cell-Based Neural Culture Models and Microelectrode Array Technology for Proconvulsant Risk Assessment in the Neutox Pilot Study
Millard, D.C.; Hayes, H.B.; Nicolini, A.M.; Arrowood, C.A.; Clements, M;