« Back
CRISPR-Cas9 genome editing utilizing chemically synthesized RNA
Poster Title: CRISPR-Cas9 genome editing utilizing chemically synthesized RNA
Submitted on 06 Oct 2016
Author(s): Michael Delaney, Kaizhang He, Eldon Chou, Amanda Haas, Žaklina Strezoska, Melissa L. Kelley, and Anja van Brabant Smith Dharmacon, part of GE Healthcare, 2650 Crescent Drive, Lafayette, CO 80026, USA
Affiliations: GE Healthcare Dharmacon, Inc.
This poster was presented at Discovery On Target 2016
Poster Views: 2,428
View poster »

Poster Information
Abstract: The CRISPR-Cas9 system allows researchers to quickly edit genes for functional gene knockout in mammalian, fish, and plant genomes, among others. Consequently, this has dramatically transformed biological research. Cas9 nuclease and a guide RNA are required for CRISPR-Cas9 genome engineering; however, these components can be utilized in different reagent formats, depending upon the application. Vector-based guide RNA reagents utilize an expressed chimeric single guide RNA (sgRNA), while synthetic reagents can be either sgRNA or a two-RNA system of CRISPR RNA (crRNA) and tracrRNA as the guide RNA component. Chemical RNA synthesis has been applied for the rapid generation of either crRNA and tracrRNA or sgRNA. This allows for direct delivery into cells for unique gene editing applications such as high throughput arrayed screening or experiments that benefit from DNA-free components. Summary: Chemical synthesis has been easily applied for rapidly generating either crRNA and tracrRNA or synthetic sgRNA for direct delivery into cells for gene editing applications such as DNA-free options and high throughput arrayed screening.Report abuse »
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters

BAT Molecular Imaging with SPECT-CT, PET-CT, PET-MRI and Fluorescence-PET: A Systematic Review of the Literature Data
Tarik Z Belhocine, MD., Ph.D *, Albert A Driedger, MD., Ph.D **, Jean-Luc Urbain, MD., Ph.D ***

Expression of Cdc25c in Piper betle treated drug resistant human colon cancer cells, HT-29
Shelomi Mira Karoon & Looi Mee Lee

Microstructure Analysis of Cr-Mo-V-W High-Entropy Alloys
Daiki Ikeuchi

Multiplex miRNA Profiling for Biomarker Discovery and Verification Studies Using the FirePlex® Platform
M. Tackett, B. Heinrich, I. Diwan, G. Tejada, C. Rafferty, E. Atabakhsh, and D. Pregibon

Platinum™ SuperFi™ DNA Polymerase for the highest success in PCR
Rasa Sukackaitė, Martyna Simutytė, Skaistė Valinskytė, Laurynas Vanagas, Karolis Matjošaitis, Renata Rimšelienė, Remigijus Skirgaila.