« Back
Highly Automated “Sample-to-Result” NGS and PCR Workflow for Molecular Diagnostics
Poster Title: Highly Automated “Sample-to-Result” NGS and PCR Workflow for Molecular Diagnostics
Submitted on 11 Jul 2017
Author(s): Elian Rakhmanaliev, Tatiana Ivanova, Yin Kum Ng, Alex Yeo, Harry Suhardi, Caroline Villy, Mei Qi Yee, Kevin Tan, Amanda Fan, Andy Soh, Pramila Ariyaratne, Si Kee Tan, Jocelyn Wong, Jiang Xia, Grace Tan, Jasmin Ang, John Ong, Gerd Michel, Charlie Lee, Wen Huang
Affiliations: Vela Diagnostics Pte. Ltd., Singapore
This poster was presented at Molecular Diagnostics Conference (LabRoots), April 12-13, 2017
Poster Views: 2,553
View poster »

Poster Information
Abstract: PCR and Sanger sequencing methods have been the standard molecular methods in clinical diagnostics for decades. Deep sequencing or Next Generation Sequencing (NGS) technology revolutionized the field of genomics, transcriptomics and metagenomics and is now rapidly becoming a routine method in different areas of clinical diagnostics such virology, oncology, drug-resistance monitoring, non-invasive prenatal tests, microbiology, precision medicine, etc.
We developed a complete (“Sample-to-Result”) highly automated multi-purpose workflow, which consists of: 1) a robotic liquid handling system for nucleic acid extraction, PCR set-up and/or NGS library preparation (Sentosa SX101); 2) instruments for real-time PCR or deep sequencing (Ion Torrent's PGM system); 3) kits for nucleic acid extraction, target specific real-time PCR-based tests, NGS library preparation assays and reagents for deep sequencing; 4) assay specific applications, and 5) data analysis and reporting software. Different diagnostic applications employ the same robotic platform for qPCR set-up and preparation of NGS libraries. In less than 5 years Vela Diagnostics developed 7 NGS-based viral and oncology assays and more than 20 qPCR-based viral, microbial and oncology CE-IVD tests, which can be run on the same system. In addition, several extraction kits were developed to isolate nucleic acids from various types of clinical samples, including FFPE, whole blood, plasma/serum, swabs, sputum, stool and urine.
Sentosa qPCR and NGS workflow appears as a robust and efficient in vitro diagnostics (IVD) tool for the detection and/or quantitation of a wide range of bacterial and viral pathogens as well as mutations in human genes. Such comprehensive combined NGS and qPCR workflow that can help fill some existing gaps in the quality of molecular diagnostics will take the necessary steps towards improving patient outcomes.
Summary: Highly Automated “Sample-to-Result” NGS and PCR Workflow for Molecular Diagnostics.Report abuse »
Ask the author a question about this poster.
Ask a Question »

Creative Commons