« Back
Identification of genes involved in cell cycle regulation using arrayed synthetic CRISPR RNA libraries in a multiparameter high-content assay
Poster Title: Identification of genes involved in cell cycle regulation using arrayed synthetic CRISPR RNA libraries in a multiparameter high-content assay
Submitted on 25 Oct 2017
Author(s): ou, Elena Maksimova, Emily M. Anderson, Shawn McClelland, Melissa L. Kelley, Annaleen Vermeulen and Anja van Brabant Smith
Affiliations: Dharmacon part of Horizon Discovery Group
This poster was presented at GDI conference 2017
Poster Views: 570
View poster »

Poster Information
Abstract: Here, we used a cell cycle reporter cell line to perform an arrayed, synthetic crRNA:tracrRNA screen targeting 169 genes with four crRNAs per gene with high content analysis (HCA) to identify genes that regulate the cell cycle. Multiple parameters were used to classify cells into different cellular states and phases of the cell cycle: cells with irregularly shaped nuclei, cells in G1 phase, cells either in S or G2 phase, cells in mitosis or with condensed chromatin, and cells with multinuclear DNA component. We used a novel statistical method for hit identification and applied multiple strategies including gene expression analysis, confirmation of genomic insertions and deletions, and validation by orthogonal reagents to identify high confidence target genes with roles in cell cycle regulation. Most hits had multiple positive crRNAs per target gene, enabling identification of target genes with high confidence, demonstrating the power of combining synthetic crRNAs libraries with HCA assays in screening for complex cellular phenotypes in an arrayed format. Given the ease of transfecting RNAs into most cell types, we expect many phenotypic assays to be amenable to arrayed screening with synthetic crRNA libraries.Summary: Gene knockout using CRISPR-Cas9 has dramatically transformed biological research and has been rapidly applied to loss-of-function screening primarily using pooled lentiviral sgRNA libraries. A synthetic CRISPR RNA (crRNA) approach is amenable to screening in arrayed, well-by-well fashion and expands the types of phenotypic readouts that can be used, including high-content and morphology-based assays. Report abuse »
Creative Commons

Related Posters

Expression of Cdc25c in Piper betle treated drug resistant human colon cancer cells, HT-29
Shelomi Mira Karoon & Looi Mee Lee

Microstructure Analysis of Cr-Mo-V-W High-Entropy Alloys
Daiki Ikeuchi

Multiplex miRNA Profiling for Biomarker Discovery and Verification Studies Using the FirePlex® Platform
M. Tackett, B. Heinrich, I. Diwan, G. Tejada, C. Rafferty, E. Atabakhsh, and D. Pregibon

Platinum™ SuperFi™ DNA Polymerase for the highest success in PCR
Rasa Sukackaitė, Martyna Simutytė, Skaistė Valinskytė, Laurynas Vanagas, Karolis Matjošaitis, Renata Rimšelienė, Remigijus Skirgaila.

Assessment of Radiation Protection Awareness and Knowledge about Common Radiological Examination Doses among Healthcare Workers in Riyadh, Saudi Arabia
Alyousef K, Assiri A, Almutairi S, Aldalham T, Felimban G