Posters
« Back
Knockout of microRNAs using the CRISPR-Cas9 system with paired synthetic crRNAs
EP27373
Knockout of microRNAs using the CRISPR-Cas9 system with paired synthetic crRNAs
Submitted on 21 Mar 2018

Eldon T. Chou, John A. Schiel, Elena Maksimova, Travis Hardcastle, Emily A. Anderson, Annaleen Vermeulen, Anja van Brabant Smith
Dharmacon part of Horizon Discovery Group
This poster was presented at Keystone Symposia - Noncoding RNAs: Form, Function, Physiology
Poster Views: 1,062
View poster »
Poster Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9) system derived from Streptococcus pyogenes uses a Cas9 nuclease directed by a guide RNA (gRNA) to create a DNA double-strand break (DSB) at the target site. The gRNAs can be dual synthetic molecules, like the native bacterial system containing a CRISPR RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA) (Figure 1), or a single synthetic guide RNA (sgRNA). The DSB is most often repaired by either nonhomologous end joining (NHEJ) or homology directed repair (HDR) through endogenous mechanisms within mammalian cells. NHEJ can result in insertions or deletions (indels) that produce functional gene knockouts through nonsense mutations or introduction of a stop codon. When using CRISPR-Cas9 components targeting coding genes, there are typically multiple protospacer adjacent motif (PAM) sequences (NGG for S. pyogenes) to choose from along the gene to design a gRNA. For most CRISPR Cas9 genome engineering experiments, one targeting gRNA is sufficient to generate the desired functional gene knockout. However, for some applications, it may be advantageous to use two gRNAs to generate a larger deletion and ensure gene knockout or to remove an exon, long non-coding RNA (lncRNA), or transcriptional regulatory element.

Report abuse »
Questions
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters


A Novel Enzymatic Assay for Determination of Phosphatidylinositol in Biological Samples
Paul Templeton, Kyle C. Schmitt, Grigoriy Tchaga,and Gordon Yan

Improved Expansion of Neural Stem Cells with Gibcoâ„¢ Heat Stable Recombinant Human Basic Fibroblast Growth Factor
Brittany Balhouse, Diana Navarro, Richard Josephson, and Matthew Dallas

Novel Engineered Basic Fibroblast Growth Factor Improves Stability and Enables Improved Cell Culture Outcomes
Brittany Balhouse, Diana Navarro, Richard Josephson, and Matthew Dallas

Strategies for High-Titer Protein Expression Using the ExpiCHO and Expi293 Transient Expression Systems
Chao Yan Liu, Jian Liu, Wanhua Yan, Kyle Williston, Katy Irvin, Henry Chou, Jonathan Zmuda

A Chemically-Defined Baculovirus-Based Expression System for Enhanced Protein Production in Sf9 Cells
Maya Yovcheva, Sara Barnes, Kenneth Thompson, Melissa Cross, Katy Irvin, Mintu Desai, Natasha Lucki, Henry Chiou, Jonathan Zmuda