Posters
« Back
Neural network based Inversion of the quantitative phase inversion problem
EP26422
Neural network based Inversion of the quantitative phase inversion problem
Submitted on 13 Sep 2017

Ayan Sinha, Ons M' Saad, Justin Lee, George Barbastathis
MIT
This poster was presented at Focus on Microscopy
Poster Views: 113
View poster »
Poster Abstract
The phase retrieval problem in optics seeks to recover the phase of a coherent light field given time-averaged intensity measurements. We demonstrate a deep learning technique for neural networks to “learn” solutions to the problem of phase retrieval from an intensity focal stack. We approach the phase retrieval inverse problem from the perspective of model-free sensing: instead of trying to linearize the inverse problem or derive system equations, we let the network attempt to learn in a data-driven manner what those underlying (nonlinear) equations and relationships may be. Specifically, we train our neural networks on a generalized database of natural images and demonstrate in simulation that our technique performs competitively against other focal-stack phase retrieval techniques at varying levels of noise.

[1] L. Waller, L. Tian, G. Barbastathis, Optics Express 18(12), 12552-12561 (2010).
[2] Z. Jingshan, R. Claus, J Dauwels, L. Tian, L. Waller, Optics Express 22(9), 10661-10674 (2014).
[3] K. He, X. Zhang, S. Ren, and J. Sun, IEEE Conference on CVPR, (2016).
Report abuse »
Questions
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters


MODEL-AD: Bioinformatics and Data ManagementMODEL-AD: Bioinformatics and Data Management
Bruce Lamb1, Michael Sasner2, Andrew Saykin1, Lara Mangravite3, Gregory Carter2

MODEL-AD: The Disease Modeling Project
M.Sasner1, A. Oblak2, H. Williams1, G. Howell1, B.T. Lamb2 and the MODEL-AD consortium

MODEL-AD: Genetic models of late-onset Alzheimer’s disease
*A. OBLAK1,2, G. CARTER3, G. R. HOWELL3, B. LOGSDON4, L. MANGRAVITE4, K. NHO2, L. OMBERG4, K. D. ONOS3, V. PHILIP3, C. PREUSS3, S. J. SUKOFF RIZZO3, M. SASNER3, L. SHEN1,2, A. J. SAYKIN1,2, P. TERRITO1,2, A. UYAR3, H. WILLIAMS3, B. T. LAMB1,5

Preclinical drug screening in new generation Alzheimer’s disease mouse models: The MODEL-AD Consortium Strategy
P.R. Territo1, S.J. Sukoff Rizzo2, K. Onos2, J.A. Meyer1, J. Peters1, S.C. Persohn1, B.R. McCarthy1, A.A. Riley1, S. Quinney1, D. Jones1, M. Sasner2, G. Howell2, H. Williams2, A.J. Oblak1, B.L. Lamb1 and the MODEL-AD consortium

Development of a standalone solar tracking hyperspectral sensor platform
Dieter Vansteenwegen (VLIZ), Kevin Ruddick (RBINS), André Cattrijsse (VLIZ), Thanos Gkritzalis (VLIZ), Dimitry Van der Zande (RBINS)