Posters
« Back
Rapid analysis of 3D tumour spheroids in soft agar and on ultra-low attachment plates using a laser scanning imaging system
EP21579
Poster Title: Rapid analysis of 3D tumour spheroids in soft agar and on ultra-low attachment plates using a laser scanning imaging system
Submitted on 06 Mar 2014
Author(s): Anne F Hammerstein, Diana Caracino, and Paul Wylie
Affiliations: TTP Labtech
Poster Views: 2,154
View poster »


Poster Information
Abstract: Research to identify new anticancer drugs is currently facing significant challenges, as only 5% of compounds that show efficacy in pre-clinical development go on to become licensed drugs. Traditionally 2D cell culture models have been employed to evaluate drug candidates in the early phases of the drug discovery process, however, there is increasing evidence that cells grown in 2D monolayers do not accurately reflect the biological complexity of tumours. The requirement for better in vitro tumour models that are compatible with high throughput screening campaigns has led to the development of 3D cell cultures models, especially muliticellular tumour spheroids, which retain many of the morphological and genetic traits of tumours.

Here we describe the formation of such spheroids by two methods: On ultra-low attachment plates and in semi-solid agarose. Both methods are compatible with 96- and 384-well microplate formats. We then used the acumen cellista to rapidly image entire microplates (<5 minutes/plate), reporting a range of parameters such as spheroid number, area and volume. The acumen cellista is ideally suited to the high content analysis of spheroids, as the whole-well scanning capability of the instrument will include data from all the spheroids in a well, while the large depth of field of the scan lens allows the determination of individual spheroid volume without the need to acquire a Z stack of images.
Summary: The requirement for better in-vitro models that are compatible with high-throughput screening campaigns has led to the development of 3D cell cultures models, especially muliticellular spheroids, which retain many of the morphological and genetic traits of tumours.
Here we describe the formation of such spheroids by two methods: on ultra-low attachment plates and in semi-solid agarose. Both methods are compatible with 96- and 384-well microplate formats.
References: Hutchinson et al., Nature Rev. Clin Oncol.Report abuse »
Questions
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters


Genetic Engineering in Male Sterility for Hybrid Variety Development
Abir Hasan Joy

VITVO: Mimicking In Vivo Complexity By The Innovative 3D Model
Olivia Candini1, Giulia Grisendi1, Elisabetta Manuela Foppiani1, Matteo Brogli1, Beatrice Aramini2, Valentina Masciale3, Carlotta Spano1, Tiziana Petrachi4, Elena Veronesi4, Pierfranco Conte5,6, Giorgio Mari1 & Massimo Dominici1,3

Characterization of patient-derived organoids cultured on a gas-rich, liquid-liquid interface
James T. Shoemaker, Katherine R. Richardson, Jamie Arnst, Adam Marcus, Jelena Vukasinovic

Print Me An Organ?
Amanda Tan; Fatin Nur Syamimi Abdul Razak; Kathy Jia Qi Hu; Diew Fung Lau; Muhammad Hafizan Mustari; Nurul Fatihah Mohamad Azmi; Kar Hui Tan; Nithiyah Ramasundram

Functional Assay of Neural Activity with Cell-Based Neural Culture Models and Microelectrode Array Technology for Proconvulsant Risk Assessment in the Neutox Pilot Study
Millard, D.C.; Hayes, H.B.; Nicolini, A.M.; Arrowood, C.A.; Clements, M;