« Back
Structure-Based Drug Discovery Targeting the Bromodomains of TAF1 (TFIID subunit 1)
Poster Title: Structure-Based Drug Discovery Targeting the Bromodomains of TAF1 (TFIID subunit 1)
Submitted on 09 Feb 2017
Author(s): Md Rezaul Karim, Jinyi Zhu, Ernst Schonbrunn
Affiliations: University of South Florida; Moffitt Cancer Center
Poster Views: 646
View poster »

Poster Information
Abstract: TAF1 (TBP associated factor 1), the major component of general transcription factors that nucleates the formation of pre-initiation complex (PIC) for transcription machinery, plays important role in transcriptional dysregulation in malignant transformation resulting into cancer as well as in other diseases. With the current anti-cancer drugs, regulation of this dysregulated transcription is not achieved due to lack of targetable options on the surface of this large molecule. To close the gap, current research introduces a new approach to target the TAF1 through its epigenetic reader domains, the bromodomains. The long-term goal of this research project is to develop a potent and selective bromodomain inhibitor of TAF1 to modulate aberrant gene transcription in cancer by screening chemical libraries through differential scanning fluorimetry (DSF) assay in a HTS campaign, which will be validated and characterized by X-ray crystallography coupled with isothermal titration calorimetry (ITC) to develop novel chemical probes. Collectively, using these array of screening and validation experiments a drug candidate will be developed to be added in the regimen of cancer therapeutics.Summary: Recent advancement in research indicates that targeting epigenetic processes will be the next revolutionary approach to develop therapeutic agents against cancer. In this proposal, we will discover and characterize new small molecule inhibitors for a major epigenetic protein involved in malignancy.References: References
1 Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067-1073, doi:10.1038/nature09504 (2010).
2 Roy, A. L. & Singer, D. S. Core promoters in transcription: old problem, new insights. Trends Biochem Sci 40, 165-171,
3 Thomas, M. C. & Chiang, C. M. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41, 105-178,
4 Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549-561 (1989).
5 Wassarman, D. A. & Sauer, F. TAFII250. a transcription toolbox 114, 2895-2902 (2001).
6 Hong, B., Le Gallo, M. & Bell, D. W. The Mutational Landscape of Endometrial Cancer. Curr Opin Genet Dev 30, 25-31,
7 Zhao, S. et al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci U S A 110, 2916-2921,
8 Wada, C., Kasai, K., Kameya, T. & Ohtani, H. A general tr
Report abuse »
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters

Potential therapeutic effects of induced pluripotent stem cells on induced salivary gland cancer in experimental rats
Yasmine Alaa El-Din1, Dina Sabry2, Amal Hassan Abdelrahman3, and Safa Fathy3

A New Method for the Reliable Detection of 13C Multiplets of Fluorine Containing Compounds
Dimitris Argyropoulos, Rostislav Pol, Vladimir Mikhailenko, and Sergey Golotvin

Investigating orthogonal in vitro analytical approaches to demonstrate bioequivalence (BE) of nasal suspension formulations
Gonçalo Farias, Robert Price, William Ganley, Debbie Huck-Jones, Paul Kippax & Jagdeep Shur

The MODEL-AD consortium preclinical testing pipeline: pharmacokinetics and pharmacodynamics of prophylactic treatment with levetiracetam on the 5XFAD mouse model of Alzheimer’s Disease
SJ Sukoff Rizzo1, SK Quinney2, KD Onos1, KJ Keezer1, DR Jones2, AR Masters2, IF Metzger2, JA Meyer2, J Peters2, SC Persohn2, BR McCarthy2, AA Riley2, M Sasner1, G Howell1, H Williams1, AJ Oblak2, BL Lamb2, and PR Territo2

Validation of Factor IIa Assay for Dalteparin Sodium
Dr Amitabha De, Kiran Shah, Prajakta Ambre, Jyoti Gupta