« Back
Sub-regional differences in metabolic activity of human amniotic membrane - a rich source of stem cells
Poster Title: Sub-regional differences in metabolic activity of human amniotic membrane - a rich source of stem cells
Submitted on 06 Jan 2018
Author(s): Asmita Banerjee (1), Adelheid Weidinger (1), Andrea Lindenmair (1), Simone Hennerbichler (2), Heinz Redl (1), Andrey Kozlov (1), Susanne Wolbank (1)
Affiliations: 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria; 2 Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
This poster was presented at PACT symposium 2015, Vienna, Austria
Poster Views: 649
View poster »

Poster Information
Abstract: The human amniotic membrane (hAM), the innermost fetal membrane, contains cells with stem cell characteristics with low immunogenicity, making it a suitable material for tissue engineering. For clinical application, profound knowledge of properties, differentiation capacity and quality of the applied material is a prerequisite. Previously, we have shown that hAM can be differentiated towards osteogenic, chondrogenic and Schwann cell-like lineages. Differentiation is a highly energy-consuming process. However, hAM can be partitioned in placental and non-placental regions, giving rise to the question, whether these sub-regions show differences in morphology and energy metabolism. Mitochondrial respiration, monitored by high resolution respirometry, Oroboros Instruments, was 4-fold higher in the placental region compared to the non-placental region. Interestingly, respiratory control ratio showed no differences, reflecting similar quality of mitochondria in both regions, suggesting higher numbers of mitochondria in the placental region. Thus, the placental region seems to be more capable in terms of energy production, but also more oxygen-dependent. In histological sections of hAM, stained with haematoxylin/eosin, epithelial cells of the placental region appeared cylindrical with decentralized nuclei, whereas epithelial cells of the non-placental region were flattened and more homogenous. Thus, the placental and non-placental regions show distinct differences in morphology and mitochondrial activity. Since mitochondrial activity is closely related to cell type and function, the question is whether regional differences reflect different cellular functions. If so, may this also play a role in functionality, differential potential and cell fate, and may hence impact therapeutic properties in clinical applications.Summary: Investigation of the human amniotic membrane show distinct sub-regional differences of mitochondrial activity.Report abuse »
Ask the author a question about this poster.
Ask a Question »

Creative Commons