Posters
« Back
Universal Homogeneous Bioluminescent Assay to Monitor the Activity of Various Classes of Methyltransferases in vitro
EP25813
Poster Title: Universal Homogeneous Bioluminescent Assay to Monitor the Activity of Various Classes of Methyltransferases in vitro
Submitted on 25 May 2017
Author(s): Michael Curtin, Kevin Hsiao1, Said A. Goueli1,2
Affiliations: 1Research and Development, Promega Corp. Madison, WI 53711, and 2University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
Poster Views: 430
View poster »


Poster Information
Abstract: Post transcriptional modifications of proteins and nucleic acids are well-recognized as playing a major role in many cellular processes. Recent biochemical and biological data suggest that the enzymes involved in such modifications, including phosphorylation, acetylation, methylation, etc, play pathogenic roles in cancer, inflammation, and neurodegenerative diseases. Thus, pharmacological modulation of these enzymes by small molecules will be beneficial in developing novel therapeutics for multiple unmet medical needs. Of these, methyltransferases are known to alter the epigenome by altering the methylation status of nucleic acids or proteins resulting in changes in cellular functions. In order to screen for modulators of these enzymes for the development of next generation of drugs, robust screening assays are urgently needed. We have developed a novel assay that monitors the activities of methyltransferases and their modulation by small molecules.

The assay is universal since it is based on quantitation of S-adenosylhomocysteine(SAH), a product of most methylation reactions, thus can be used with of a broad range of methyltransferases such as DNA, protein, RNA, and small molecules methyltransferases. The bioluminescent assay is quite sensitive and is formatted for HTS applications. In addition, the assay has been validated for all classes of protein methyltransferases (Lysine and Arginine), and with different types of substrates (small peptides, large proteins, or even nucleosomes). A strong feature of this assay is its utility with a broad range of substrates with no limitations their concentration or composition (short vs. long peptides), thus enabling the generation of kinetic data and determining the mechanism of action of various modulators of methyltransferases of interest.
Summary: We have developed a novel assay that monitors the activities of methyltransferases and their modulation by small molecules. Report abuse »
Questions
Ask the author a question about this poster.
Ask a Question »

Creative Commons

Related Posters


A Novel Enzymatic Assay for Determination of Phosphatidylinositol in Biological Samples
Paul Templeton, Kyle C. Schmitt, Grigoriy Tchaga,and Gordon Yan

A Chemically-Defined Baculovirus-Based Expression System for Enhanced Protein Production in Sf9 Cells
Maya Yovcheva, Sara Barnes, Kenneth Thompson, Melissa Cross, Katy Irvin, Mintu Desai, Natasha Lucki, Henry Chiou, Jonathan Zmuda

Development of an in vitro Model System for Newcastle Disease Virus Persistence in Bladder Cancer Cells
Ahmad U1,, Chan SC2, Chau DM1, Chia SL5, Abdullah S1,3, Yusoff K5 & Veerakumarasivam A1,4*

NEW INSULAR RED PROPOLIS FROM COLOMBIA: BOTANICAL ORIGIN, BIOLOGICAL AND CHEMICAL MARKERS
Salamanca Grosso, G.; Osorio Tangafarife, M.P.

The EurOPDX EDIReX project: towards a European Research Infrastructure on patient-derived cancer models
E. Vinolo 1, J.P. Morris 1, D.G. Alférez 2, J. Arribas 3,4,5, C. Bernadó 3,4,5, A. Bertotti 6, A. Bruna 7, A.T. Byrne 8, C. Caldas 7, R.B. Clarke 2, N. Conte 9, R. Corsi 10, S. Corso 6, M. Crespo 3, A. Dahmani 11, V. Dangles-Marie 11, D. Decaudin 11, Z. Dudová 12, A. Fiori 6, S. Giordano 6, M. Hauptsmann 13, M. Hidalgo 14, C. Isella 6, S. de Jong 15, J. Jonkers 13, A. Křenek 12, O. Krijgsman 13, D. Kouřil 12, J.C. Lacal 14, L. Lanfrancone 16, E. Leucci 17, G.M. Mælandsmo 18, E. Marangoni 11, J. Mason 9, M.Th. Mayrhofer 19, A. Mazzocca 6, T.S. Meehan 9, E. Montaudon 11, F. Nem